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Many important issues of colloidal physics can be expressed in the context of inhomogeneous fluid phe-
nomena. When two large colloids approach one another in solvent, they interact at least partly by the response
of the solvent to finding itself adsorbed in the annular wedge formed between the two colloids. At shortest
range, this fluid mediated interaction is known as the depletion force/interaction because solvent is squeezed
out of the wedge when the colloids approach closer than the diameter of a solvent molecule. An equivalent
situation arises when a single colloid approaches a substrate/wall. Accurate treatment of this interaction is
essential for any theory developed to model the phase diagrams of homogeneous and inhomogeneous colloidal
systems. The aim of our paper is a test of whether or not we possess sufficient knowledge of statistical
mechanics that can be trusted when applied to systems of large size asymmetry and the depletion force in
particular. When the colloid particles are much larger than a solvent diameter, the depletion force is dominated
by the effective two-body interaction experienced by a pair of solvated colloids. This low concentration limit
of the depletion force has therefore received considerable attention. One route, which can be rigorously based
on statistical mechanical sum rules, leads to an analytic result for the depletion force when evaluated by a key
theoretical tool of colloidal science known as the Derjaguin approximation. A rival approach has been based on
the assumption that modern density functional theories (DFT) can be trusted for systems of large size asym-
metry. Unfortunately, these two theoretical predictions differ qualitatively for hard sphere models, as soon as
the solvent density is higher than about 2/3 that at freezing. Recent theoretical attempts to understand this
dramatic disagreement have led to the proposal that the Derjaguin and DFT routes represent opposite limiting
behavior, for very large size asymmetry and molecular sized mixtures, respectively. This proposal implies that
nanocolloidal systems lie in between the two limits, so that the depletion force no longer scales linearly with
the colloid radius. That is, by decreasing the size ratio from mesoscopic to molecular sized solutes, one moves
smoothly between the Derjaguin and the DFT predictions for the depletion force scaled by the colloid radius.
We describe the results of a simulation study designed specifically as a test of compatibility with this complex
scenario. Grand canonical simulation procedures applied to hard-sphere fluid adsorbed in a series of annular
wedges, representing the depletion regime of hard-body colloidal physics, confirm that neither the Derjaguin
approximation, nor advanced formulations of DFT, apply at moderate to high solvent density when the geom-
etry is appropriate to nanosized colloids. Our simulations also allow us to report structural characteristics of
hard-body solvent adsorbed in hard annular wedges. Both these aspects are key ingredients in the proposal that
unifies the disparate predictions, via the introduction of new physics. Our data are consistent with this proposed
physics, although as yet limited to a single colloidal size asymmetry.
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I. INTRODUCTION

Equilibrium statistical mechanics of bulk and inhomoge-
neous liquids, applied to physicists models of molecular flu-
ids, is today a mature and apparently well-understood branch
of physics [1]. Recent attention has turned to colloidal sys-
tems, where the important issues boil down to whether or not
methods developed for molecular models remain valid when
one or more of the species is much larger than the solvent
species. This size asymmetry leads naturally to descriptions
based on inhomogeneous fluid phenomena. Colloidal sys-
tems have been intensively studied experimentally for almost
a century, due to their technological significance. Probably
the most important additional physics that arises because of a
large size ratio between solute and solvent is the “depletion
effect,” which can be usefully discussed purely in terms of
entropic (free volume and free surface area) contributions to
the free energy [2-5]. Depletion dominates solute-solute and
solute-wall interactions mediated by solvent, in the short-
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range regime where solvent molecules are excluded from the
center of the annular wedge formed by the two solutes, or the
solute and the wall, because of the finite size of the solvent
particles.

In a recent letter [6], associated with this paper, we have
presented the main conclusion of a simulation test of current
understanding of hard-body colloidal physics. Earlier work
had raised serious doubts as to whether or not widely used
current statistical mechanical methods are applicable to
model colloidal systems. The presence of a disparate size
ratio between solute and solvent has a dramatic effect on the
solvent mediated interaction between hard-body solutes in
hard-sphere solvent, at least when one applies the ubiquitous
theoretical tool of colloidal science known as the “Derjaguin
approximation” [7]. At sufficiently close range where the
colloid surfaces exclude solvent particles from penetrating
between them, the “depletion regime,” this class of statistical
mechanical analysis predicts a linear solvent-mediated force,
where the associated potential is attractive at low solvent
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density but becomes repulsive at intermediate and high den-
sity. This physics is in total contradiction with the most so-
phisticated class of classical density functional theory,
known as fundamental-measure-theory density functional
theory (FMT-DFT) which is based on incorporating the geo-
metric measures of hard-sphere geometry, at least when
FMT-DFT is applied to a homogeneous colloidal mixture in
the limit of low colloid concentration to obtain the depen-
dence of the pair depletion force on solvent density [8,9].
The implications for a breakdown in either of these ap-
proaches represent a serious failure in current understanding
of statistical mechanics applied to colloidal physics. Theoret-
ical modeling of this qualitative disagreement/breakdown
has implied that one should focus on the structure and statis-
tical thermodynamics of the inhomogeneous solvent ad-
sorbed within the annular wedge that is formed by an inter-
acting pair of colloids or, alternatively, between a solute and
a planar hard wall [10,11]. At the heart of the matter lies the
significance, or otherwise, of a nearly planar-pore central re-
gion that arises when the two solutes are close to one solvent
diameter apart. This can be interpreted as a contribution to
the line tension that varies strongly with the separation of the
colloids that is ignored by the Derjaguin approximation ap-
plied to this geometry. A quantitative estimation of the sig-
nificance of this additional physics by Oettel [11] implies
that it is grossly overestimated by FMT-DFT in even the
nanocolloidal regime, while on the other hand the Derjaguin
approximation is only correct in the mesoscopic colloidal
limit. Thus the two rival statistical mechanical approaches
seem to be valid only in opposite extremes, with the nano-
colloidal world lying inevitably in between. This, in turn,
implies a breakdown in the linear scaling of the solvation
force with colloid radius, predicted by both FMT-DFT and
the Derjaguin analysis. Below, we report the full details of a
simulation test that strongly supports this complex scenario,
based on direct measurement of the fluid mediated force
within a series of systems consisting of hard-sphere solvent
adsorbed within annular wedges, spanning the depletion re-
gime. Section II explains the simulation procedures and the
underlying statistical mechanics used to extract the depletion
force from the measured density profile. In Sec. III we de-
scribe the structure of the adsorbed fluid and associated fluc-
tuations and report the quasi-two-dimensional adsorption
deep within the central region of the annular wedge. Section
IV presents our results for the depletion force at a colloid-
solvent size ratio of 20. For completeness, we re-present our
high pressure data reported earlier [6], where the presence of
new physics is unmistakable, but now compared with results
at a lower solvent density that has been extensively studied
before with DFT [8] simulation [12-14] and integral equa-
tion theories [12,13]. Finally, Sec. V critically discusses our
main conclusions and notes implications for the future devel-
opment of colloidal physics.

II. SIMULATION PROCEDURES AND ASSOCIATED
STATISTICAL MECHANICS

Figure 1 is a scale drawing of the annular geometry of our
simulation system. A hard spherical colloid of radius R is
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FIG. 1. A scale drawing of a slice at x=0 (the yz plane) through
the annular geometry adopted for our simulation systems. To save
space the bottom section of the figure is truncated. Solid lines rep-
resent the physical hard-wall boundaries of the planar walls and the
fixed central colloid. The dashed lines are the associated exclusion
boundaries for hard-sphere solvent; i.e., the limits of closest ap-
proach for the center of a solvent sphere of diameter o (as illus-
trated). Periodic boundaries were placed at x=+L/2 and y=+L/2;
not drawn. The simulation box therefore has dimensions L XL
X 2(R+h) and aside from the far corners is dominated by annular
symmetry about the z axis.

fixed at the origin, lying equidistant between a pair of planar
hard walls lying parallel to the xy plane. The separation
2(R+h) of the walls is chosen to fix the closest approach of
the walls to the colloid surface to be somewhere in the deple-
tion regime O<<h<o; where o denotes the solvent hard-
sphere diameter. Hard-sphere solvent is used for direct com-
parison with FMT-DFT. The dashed boundaries in Fig. 1
define the volume V(%) and the surface area A(h) accessible
to solvent. That is, the center of a solvent sphere can ap-
proach no closer than ¢/2 from either the planar walls or the
colloid surface/wall. Thus the effective radius of curvature of
the two annular wedges, defined by the above geometry, is
R'=R+0/2. The depletion volume and the associated loss of
surface area can be identified in Fig. 1 as the region of over-
lap between the dashed boundaries. This overlap is a maxi-
mum at 27=0 and reduces smoothly to zero as #— o. The
annular radius of closest approach of a solvent center is

Yo=V2R'(0=h) = (0= h)* = \2R' (o - h), (1)

which can be regarded as inducing a line-tension contribu-
tion to the free energy of the solvent. The essence of the
Derjaguin approximation for the depletion force is that this
line tension contribution is assumed to be independent of &
throughout the depletion regime [10]. The annular radius y,
denotes a distance from the center of the wedge at which the
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structure of the adsorbed solvent is no longer influenced by
the annular geometry; i.e., at y>y, the density profile
p.(y;h)=p(y,z—z,:;h) of solvent adsorbed on the hard
walls [z,,=+(R'+h—0)] is the constant p,, belonging to a
planar wall-solvent interface. The above notation also re-
minds readers when the density profile is implicitly depen-
dent on the distance & between the colloid and the wall. For
all our simulations reported below we were able to maintain
the fixed value y,=14.50. Periodic boundary conditions
were imposed at x=+L/2 and y=+L/2, with L/2=20.50
chosen to be significantly greater than y,. We can therefore
regard the two annular wedges to be independent and to be
bounded by reservoirs of semi-infinite wall-solvent regions
including a significant amount of homogeneous bulk solvent;
note that from previously published planar wall-solvent
simulations we could be confident in advance that overlap of
density profile structure from different interfacial regions
would be minimal for separations greater than 8¢ [15]. We
restricted our data sampling to annular symmetry by simply
ignoring the unwanted corners of our simulation box. Finally,
for our chosen size ratio 2R/o0=20, note that the separation
between the dashed planar boundaries varies between 190
and 210 for systems spanning the depletion regime.
Colloid-wall geometry has the considerable advantage
over colloid-colloid geometry in that the depletion force
measurement (see below) can be restricted to measuring the
adsorption of solvent on the planar walls alone. It is unlikely
that our conclusions below are restricted to this geometry,
since both Derjaguin theory and FMT-DFT predict that for
our chosen radius of curvature R'=10.50 the colloid-wall
depletion force is very close to twice the corresponding
colloid-colloid result, throughout the entire depletion regime
[8]. If, as we shall argue, the Derjaguin approximation is
asymptotically exact in the limit of R" — o then so also is the
geometric scaling of two, between colloid-wall and colloid-
colloid geometry; see, e.g., [10]. The size ratio of 20 is a
convenient choice for our simulation method because it al-
lows a nice balance between the various inhomogeneous re-
gions that we require to be in equilibrium with one another,
but otherwise independent, and between these regions and
homogeneous bulk solvent. This size ratio is also a good
choice for studying the disagreement between FMT-DFT and
the Derjaguin approximation, since if the analysis of Oettel
[11] is valid then it will lie intermediate between the two
contrasting predictions. Roth and co-workers have used
FMT-DFT to obtain the depletion force in both colloid-wall
and colloid-colloid geometry at size ratios between 10 and
50. These data were obtained at a solvent chemical potential
corresponding to a reduced bulk density of 7=mpo’/6
=0.3. Since the physics we wish to study is predicted to be
extremely evident at higher pressures than this, we have also
carried out simulations at 7=0.4 for comparison with the
FMT-DFT data of Goulding [9]. Oettel has confirmed that
the results of these two earlier studies are not significantly
dependent on various modifications of FMT-DFT, including
additional statistical mechanical consistency [11]. There are
two important predictions shared by all these density func-
tional studies of the depletion force of hard-body models.
First, the depletion force f(h) is not a linear function of &
and, in particular, at moderate to high pressure the nonlinear-
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ity is extreme in the repulsive region #— o. Second, this
nonlinearity is not a function of colloid radius; i.e., the scaled
depletion force f(h)/R’ is found to be essentially indepen-
dent of size ratio (at least in the range studied to date; 10
<2R/o=<100).

Our simulations were performed with standard Monte
Carlo procedures in the grand canonical ensemble [16,17].
This choice was made so that we could set the chemical
potential u of the solvent to desired values. Note that canoni-
cal ensemble simulations would be inappropriate for our
complex annular geometry, since adsorption in each wedge
and along the planar and colloid surfaces would cause unac-
ceptable difficulties in setting the required thermodynamic
state (bulk density of solvent). Solvent insertions and dele-
tions were made with equal probability throughout the simu-
lation box, which means that in effect we relied on mechani-
cal equilibrium with the rest of the system to ensure
equilibrium deep within the narrow confines of the wedges.
That is each annular wedge subsystem of our total simulation
system is in contact with a large reservoir at a fixed chemical
potential. In Sec. III below we describe measurements of the
average quasi-two-dimensional density confined deep within
the center of the wedges, together with density profiles along
the planar walls and associated fluctuation phenomena,
which attest (or otherwise) to the success of this approach.
We used a two-stage approach to equilibrating systems of the
geometry of Fig. 1. The first stage involved equilibrating a
system of hard-sphere fluid bounded by the planar hard walls
and periodic boundaries depicted in Fig. 1, but with no col-
loid present. The fixed colloid was then introduced into an
equilibrated planar geometry configuration, by simply delet-
ing all solvent spheres overlapping with the central colloid
(solvent coordinates that lay within a radius of R’ of the
colloid center). A second period of equilibration was then
carried out in annular geometry to allow for adsorption and
desorption into and out of the wedge regions. Depending on
the choice of chemical potential (and hence bulk pressure p)
and the value of & these two stages required up to 2 X 108
and 4 X 10° simulation steps, respectively; each step defined
as one translation attempt of a randomly chosen solvent. In
addition, one attempt to either insert or delete a solvent
sphere (placed or chosen at random throughout the system)
was made after every tenth step. Typical production runs at a
fixed colloid-wall separation were split into ten subaverages
(for statistical error estimation purposes) each subaverage of
length 10% at 7=0.3 and length 2 X 10% at =0.4. These sys-
tems were sampled 1000 times per subaverage to collect den-
sity profile data (see below). In addition, for each choice of
chemical potential a giant simulation run was carried out at
h=0 only. The production runs of giant simulations con-
sisted of 50 subaverages at #=0.3 and 100 at »=0.4, each
subaverage of length 4 X 10%. The total amount of solvent in
our production systems depended on the set values of & and
M, but was always within the range 16 000 <N <25 000.

Our simulation method relies on the following statistical
mechanical sum rule expressing mechanical equilibrium of
solvent adsorbed in a single annular wedge, in the form of a
wall-fluid virial theorem [5,10,18]:
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dV(h)
oh

Bf(h) = Bp +2m f dyylp,(y;h) —p,], (2

Yo

where [ denotes the inverse temperature 1/7 in units of
Boltzmann’s constant k. In the absence of the colloid this
result reduces to the planar hard-wall sum rule [19]

Bp = py- (3)

The first term on the right side of Eq. (2) is the direct con-
tribution of the depleted volume that is denied to solvent
centers within the wedge, and can be calculated directly from
Fig. 1:

%?=—27TR'(0’—h)+77(0—h)2. (4)

Note that this result is the single wedge value, exactly one-
half that for the double wedge geometry of Fig. 1. The re-
maining integral term on the right of Eq. (2) is the total
excess number of particles in contact with one of the planar
walls (a two-dimensional adsorption), which hereafter will
be denoted /,,. In simulation code /,, is expressed in the form

Iw = <Nw>lim 5—0 " prW’ (5)

S

where N,, counts the number of solvent centers lying in a bin
of depth & directly adjacent to one of the planar walls (the
planar dashed boundaries in Fig. 1) and the angular brackets
denote a grand canonical statistical average. A,,=[(L/2)?
- yé] refers to the area of the wall forming the sides of this
giant annular bin. So, measurement of the depletion force
simply requires us to collect the average amount of solvent
present within a series of such bins of different depth and
then extrapolate to zero bin depth. The same extrapolation
restricted to the region y,<<y<<L/2 enabled us to directly
measure p,, and hence the bulk pressure. In practice, this
extrapolation was always readily carried out with only four
data points required (8/0=0.02, 0.04, 0.06, and 0.08) and
essentially introduced no additional numerical error because
of the simple one-body nature of the integrand. The statisti-
cal error reported below is therefore dominated by natural
density fluctuations within the system as a whole. The only
other aspect of the measurement is that we must also subtract
off the value that would be found in the absence of the col-
loid; p,A,,. This can be done in two ways, either directly
measure the same quantity restricted to the range y,<y
< L/2, or from Eq. (3) insert the pressure defined by the bulk
equation of state at our chosen thermodynamic state.

In the Derjaguin approximation it is straightforward (see,
e.g., [10]) to show that I, evaluates to —4mR’ By, where y
denotes the surface tension of an isolated wall-solvent inter-
face (within the spirit of the Derjaguin approximation one
should ignore the insignificant curvature dependence of the
colloid-solvent surface tension). For our hard-body model
we have access to quasiexact analytic expressions for the
thermodynamic quantities that fully determine the depletion
force in the Derjaguin approximation [20]:
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67(1+n+ 17— 1)
(1-n)? ’

mBpa” = (6)

and [21]

18 2(1+ﬁ : 2)
7 357757

(1-n)°

We stress that measurement of 7, and hence the depletion
force does not require us to collect data within a grid of
annular bins, since it is only the total amount of solvent at
the wall that is required to evaluate the sum rule. Neverthe-
less, we also collected a graphical representation of the sol-
vent density profile along the wall p,,(y;h), for each fixed
value of colloid-wall separation %, by recording data within a
large number of annular simulation bins lying adjacent to the
planar walls, all of fixed depth 6=0.02¢ and radial extension
6y=0.10. For this purpose it was neither necessary nor sen-
sible to develop an extrapolation procedure at each value of
y and therefore this measurement did not probe deep within
the wedge (y—y). Instead, to measure the quasi-two-
dimensional density near the central portion of a wedge we
averaged the entire amount of solvent within the wedge
(N)(y), from y, out to a distance y, to define the quantity

(N)(y)
7(* = yp)

—4mByo’ =

(7)

p2a(y) = (8)

Another sum rule for the depletion force, or rather its
isothermal derivative with respect to chemical potential, can
be obtained from the Gibbs adsorption equation for the entire
simulation system:

o) V) ayaA) AN
ow P Tow o T n

)

As with sum rule (2) we have expressed this exact result
fully in terms of quantities appropriate to a single annular
wedge (one-half of the simulation system depicted in Fig. 1).
Thus (N)** is the excess adsorption within a single annular
wedge, left after the bulk density p and planar surface ad-
sorptions —dvy/du have been subtracted. This is a line ad-
sorption defined from the line tension (free energy) of the
annular wedge [22]. We report data from this adsorption
route in Sec. IV, in addition to our measurements of the
depletion force via sum rule (2).

III. STRUCTURE OF HARD-SPHERE FLUID ADSORBED
IN A HARD-ANNULAR WEDGE

This section presents highlights and representative
samples from the structural data measured in our simulation
runs to describe key features of the density distribution of
hard-sphere fluid adsorbed in a hard-annular wedge. Because
of the nature of the virial theorem (2) the density profile
along the walls is directly associated with mechanical equi-
librium in annular geometry. Figure 2(a) shows a representa-
tion of this profile, from the giant simulation run at h=o for
the high pressure state 7=0.4. Although we have not at-
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tempted to extrapolate this data to the limit of the wall
boundary (it is raw data collected in annular bins of thick-
ness 0.020 out from the planar walls) Fig. 2(a) is neverthe-
less a strong indicator of the structure of p,(y;h=0). The
dramatic rise in the center of the wedge is simply a conse-
quence of the quasi-two-dimensional geometry in this re-
gion. For a planar pore of width =0 the density can be
calculated analytically from Widom’s potential distribution
theorem [23], which implies that in an open system the three-
dimensional density p remains finite even though the volume
available to solvent centers has shrunk to zero; po”
=exp(Bw) [19]. This, in turn, implies that the two-
dimensional density p,, is zero; i.e., the structure has re-
duced to a two-dimensional ideal gas. From the equation of
state (6) at 7=0.4, exp(Bu) evaluates to the very high but
nevertheless finite value of 6424, which is an upper bound
for p,(y=0;h=0)0> in our annular wedge system. Obvi-
ously, the numerical procedure used to generate Fig. 2(a) is
not able to probe this limit; instead, we shall report values of
paq defined by Eq. (8) to explore the quasi-two-dimensional
region y<o/2.

Another outstanding feature of the density profile of Fig.
2(a) is the separation of successive peaks. Typically, density
profiles show dominant structural correlations on the length
scale of the solvent diameter o. Here, the first peak beyond
the center of the wedge, which we shall denote as y=y, does
not appear until y;=4.70. We can understand this result in
terms of structure induced across the annular wedge, as op-
posed to structure along the walls, as depicted in Fig. 3. This
figure depicts the range of solvent-solvent separations asso-
ciated with a pair of solvent spheres becoming temporarily
jammed across the annular wedge; i.e., one sphere is sitting
on the planar wall at annular radius y,; while another sphere

is directly across the wedge on the colloid surface. In par-
ticular, the separations S; and S, defined in Fig. 3 are solu-
tions of

R’2=y%+(R'+h—a'—Sl)2, (10)

(R'+8,)*=yI+(R' + h—0)>. (11)

Inserting y;=4.70 and h=o0 into these equations yields S,
=1.111 and S,=1.004. These values confirm that the peak at
y=y,; arises from correlations due to confinement across the
annular wedge. Successive peaks are also separated by non-
integer values of o, up until y=8c where solvent is no longer
significantly confined within the wedge, as one would also
predict from the Derjaguin approximation [10]. An identical
correspondence was found at all values of /& within the deple-
tion regime. For example, at the opposite extreme A=0 the
dominant peak lies at y;=6.60 [see Fig. 2(b)] corresponding

¥

y=01

FIG. 3. An illustration of configurations in which a pair of sol-
vent spheres of diameter o are temporarily jammed across an an-
nular wedge. One sphere lies on the planar wall at y=y; while the
dotted spheres show a range of positions for a sphere on the colloid
wall. Double headed arrows labeled S; and S, denote separations of
jammed pairs.
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to §1=1.33 and S,=1.07. At h=0¢ one can notice two shoul-
ders lying deep within the annular wedge, which can only be
due to correlations in the plane of the wall. For all A
=<0.950 one or both of these shoulders becomes a small but
recognizable peak at radial distances from y, that hardly vary
at all with &; see Figs. 2(b) and 2(c). Thus in the nanocolloi-
dal regime at least, there must exist some contribution to the
depletion force from correlations induced along the walls. At
the lower pressure state 7=0.3 the same scenario is ob-
served, but the structure is noticeably weaker; Fig. 2(d).

For the giant run of Fig. 2(a) there is no sign of statistical
error in the wall density profile, on the scale of the figure.
One does observe minor statistical error in the remaining
plots, from our standard runs, but is perhaps less than one
might have expected. However, when we compared the wall
density profiles from subaverage to subaverage and between
left and right annular wedges, from our standard runs, there
was a striking appearance of statistical error at all radial dis-
tances, as if the density profile was shifting up and down the
wedge by around 0.20 over the length of roughly one sub-
average. If this is not an illusion, then Fig. 3 is presumably
the explanation; i.e., in an annular wedge the structure is
constantly adjusting between unfavorable and favorable cor-
relations across the wedge. This is probably also the reason
why the amplitude of the oscillatory structure along the walls
decays so quickly, even at relatively high bulk pressure; note,
for example, that the data of Fig. 2 are fully supportive of
our choice of y,=14.50 as shown in Fig. 1. From the deple-
tion force data (measured values of I,,), described in Sec. IV
below, it was clear that structural rearrangements within the
annular wedges could sometimes be quite violent, presum-
ably due to the sudden formation of collective annular den-
sity waves. Such major events, if they occurred, took around
three standard-run subaverages to settle down and so the
depletion force data from standard runs is subject to signifi-
cant statistical error. Note, however, that this error is due
entirely to natural fluctuations on the typical time scale of a
subaverage and so is properly averaged over by considering
many runs or undertaking single giant runs. Evidence for the
collective nature of these fluctuations is seen in Sec. IV by
comparing the data for the depletion force between the two
routes to determine p,,, defined above. If the wavelength of
the density/pressure fluctuations along the wall are of the
order of y, then the wedge and bulk regions will typically
suffer opposite deviations, which will make the average of
the two routes lie closer to the fully equilibrated value than
either of the routes separately.

One concern regarding simulations of solvent adsorbed in
highly confining wedges is that the confinement might con-
ceivably induce crystallization at the walls, within the wedge
[24]. To rule this possibility irrelevant to our data, we col-
lected occasional snapshots of the positions of solvent
spheres lying within 0.02¢0 of the solvent walls; one for each
planar wall, per subaverage. A few representative examples
from the high pressure system are shown in Fig. 4. In par-
ticular, we never observed long-term structure of any class
within this first adsorbed layer. Instead, the number and dis-
tribution of solvent spheres lying deep within the annular
wedge appears to vary extensively from snapshot to snapshot
and between the two wedges. At h=0 some snapshots were
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FIG. 4. Snapshots of solvent spheres projected onto the planar
walls of our annular wedges. Only solvents whose centers lie within
a depth 0.020 from the wall are plotted (as circles of diameter o).
Thick black circles (shrinking to a point for A=c systems) denote
the apex of the wedge (the inner boundary y=y, for solvent cen-
ters). Dashed circles represent the outer boundary of the quasi-two-
dimensional region at the center of the wedges (at radius y; in Fig.
3 as obtained from the main peaks in Fig. 2). (a) At h=0 from the
high pressure system 7=0.4. (b) A configuration contrasting with
that shown in (a) from the same system. (c) At =0 from the high
pressure system 7=0.4. (d) A configuration contrasting with that
shown in (c) from the same system. Both pairs of configurations are
separated by at least one subaverage.

consistent with a quasi-two-dimensional ideal gas inside the
wedge [Fig. 4(c)] but just as many other snapshots showed
significant adsorption [Fig. 4(d)]. At h=0 one sees similar
dramatic variations in the amount of adsorbed solvent
present close to the apex of the wedge [the thick dark circles
in Figs. 4(a) and 4(b)]. The dotted circles are drawn at y
=y, as defined in Fig. 3, which can be regarded as the outer
“wall” of the quasi-two-dimensional region. Of course, these
snapshots are restricted to a small region near the planar
walls and could therefore be misleading as to the amount of
solvent in the wedge; as it clearly is outside the wedge. For
this purpose, we measured the quasi-two-dimensional den-
sity defined by Eq. (8). Figure 5(a) shows this data for the
h=0 wedges at =0.3 and 0.4, from giant runs of 50 subav-
erages each. One observes that the density does indeed be-
come gaslike in the central region of the wedge, but never-
theless at our chosen radius of curvature R’ there is sufficient
density to allow for collisions between spheres on opposite
sides of the center of the wedge (which at h=¢ is really an
annular slit pore rather than a wedge).

This physics, dominant for 4 — o, has been proposed as a
possible reason for the breakdown of the Derjaguin approxi-
mation for the depletion force, in the repulsive force region
only [10]. It plays a central role in the modeling of Oettel
[11] which extends the Derjaguin approximation by explic-
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FIG. 5. Average number of solvent spheres adsorbed out to a
radius y from the wedge apex y,, divided by the area of this region
projected onto the xy plane, defining an average effective two-
dimensional density, Eq. (8). (a) At h=0 (yy=0) for the thermody-
namic states 7=0.3 and 7=0.4. (b) At 2=0 for the thermodynamic
state 7=0.4.

itly treating the quasi-two-dimensional region of the wedge
with two-dimensional scaled particle theory. Our data in Fig.
5(a) appear to be consistent with this modeling and we shall
return to this issue in Sec. IV. As with all our measurements
of solvent content deep inside the wedge, these data showed
great variation between successive subaverages, implying
large fluctuations in content on the time scale of a typical
subaverage. For example, at h=0 (y,=0) even for the high
pressure system, there was sometimes no solvent present
within a radius of y=0.30 from the center of the wedge/pore
over an entire subaverage, while at other times the subaver-
age value up to y=0.2 was more than twice its fully equili-
brated value. Despite these fluctuations, our simulation pro-
cedures could not equilibrate a density structure at y<0.lo
inside the h=0 wedge/pore, even during a giant run, because
the probability of a solvent center entering this region was
too small to be sampled by our standard Monte Carlo algo-
rithm. From the potential distribution theorem applied to
very thin pores [19] one would expect smooth behavior for
p24(y — 0) but the probability of a sphere penetrating this far

PHYSICAL REVIEW E 75, 011402 (2007)

was so small that it did not happen even once during our
giant runs. It seems clear from Fig. 5(a) that this cannot
effect our depletion force measurements at 7=0.3 and from
Oettel’s modelling is at worst marginal at 7=0.4 [25]. We
conjecture that in a bulk colloidal system, where the colloids
are moving, it is plausible that this apparent lack of ergodic-
ity is accentuated. We also conjecture that this behavior is
linked to the structure seen in Fig. 5(b), which plots p,,(y)
from our 7=0.4 system at 7=0. This figure shows what ap-
pears to be a kinetic barrier (the large peak) as if solvent
arriving deep within the wedge sees an effective annular wall
due to other solvent that has failed to penetrate the extremely
narrow confines. One also observes outer bumps at a spacing
of roughly o, which confirm the presence of structure in-
duced parallel to the walls, as previously surmised from Fig.
2(b). Otherwise, the quasi-two-dimensional density at 2=0
falls dramatically close to the apex, as expected from the
potential distribution theorem, although the larger opening
angle of this wedge allows solvent to penetrate much further.

IV. RESULTS FOR THE DEPLETION FORCE
OF HARD-BODY COLLOIDAL PHYSICS

Figure 6 displays our simulation results for the depletion
force, in comparison with FMT-DFT, the Derjaguin approxi-
mation, and a modification of the latter based on Oettel’s
modeling [11]. For completeness Fig. 6(b) replots our previ-
ously published data [6,26] at 7=0.4, together with a more
detailed illustration of our interpretation based on the analy-
sis of Oettel. Open circles are obtained from direct measure-
ment of the integral on the right of sum rule (2) while the
associated crosses use the same value for the first half of the
integral but adopt the limiting value of p,, defined by the
bulk equation of state (3) and (6). The density fluctuations
described in Sec. III are responsible for the significant error
bars (from standard runs). The fact that the average between
the two routes (circles and crosses) is a smoother indication
of the true result is illustrated in Fig. 6(b) at h=0.90 by
plotting two pairs of points. The lowest circle and the highest
cross are the data from all ten subaverages. The large dispar-
ity for this system was readily traced to a major fluctuation
that occurred during the seventh subaverage, that did not
recover until the end of the simulation. The much closer pair
of points in the middle are the result of restricting the aver-
aging to the first six subaverages, which did not suffer a
major out of equilibrium event. Overall our standard simula-
tion runs occupy the space in between the Derjaguin predic-
tion (straight line) and the results of FMT-DFT (full curves).
As we believe that our simulations are correctly sampling
physical time scales if averaged over sufficient numbers of
standard subaverages [27] it already follows that neither
FMT-DFT nor the Derjaguin approximation are valid in the
repulsive force regime at this size ratio. To be absolutely
certain of new physics present at h=c we undertook giant
runs for this separation alone. These giant runs were more
than an order of magnitude longer than all our other data
combined and have an associated statistical error less than
the size of the plotted symbol (small closed diamonds la-
beled with our chosen colloid/solvent size ratio of 20).
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FIG. 6. Depletion force of colloidal hard-sphere models, scaled
with the effective colloid diameter. Symbols with error bars display
our simulation data; see text. Straight lines depict the Derjaguin
limit of mesoscopic colloidal size. Full curves show FMT-DFT
data. The dotted curves are based on the analysis of Oettel [11].
Those labeled 20 can be regarded as physically based representa-
tions of our simulation data in the absence of statistical error; see
text. (a) At 7=0.3, with FMT-DFT data from Ref. [8]. The latter
consist of two closely spaced curves for size ratios 10 and 50,
respectively. (b) At 7=0.4, with FMT-DFT data from Ref. [9].

In Fig. 6(a) the thermodynamic state is 7=0.3 corre-
sponding to a moderate bulk pressure and has been exten-
sively studied before by colloidal mixture simulations and
integral equation theories [12-14], as well as FMT-DFT. For
the comparison with FMT-DFT in Fig. 6(a) we have chosen
the data of Roth er al. [8,28]. These authors directly con-
firmed that when scaled linearly with colloid radius (as plot-
ted) their FMT-DFT data was almost indistinguishable at size
ratios as disparate as 10 and 50. They also demonstrated that
FMT-DFT shows an almost perfect geometric scaling be-
tween colloid-colloid geometry and colloid-wall geometry
(the same factor of 2 predicted by the Derjaguin approxima-
tion). Oettel has also confirmed these scaling properties of
FMT-DFT for size ratios up to 100 [11]. There is therefore
no sign that the qualitative disagreement with the Derjaguin
approximation in the repulsive force region might reduce at
increasing size asymmetry. The same comparison at 7=0.4
[Fig. 6(b)] shows that this disagreement becomes dramatic at
higher pressure. Here, the only FMT-DFT data we have
available for comparison is that from Goulding’s thesis [9];
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but see also Ref. [11]. Exactly the same features are seen at
both thermodynamic states but, due to the relative insensitiv-
ity with pressure of the statistical error in our simulation
data, Fig. 6(b) presents the most convincing evidence of the
existence of new physics not captured by either the Der-
jaguin approximation nor FMT-DFT [6]. Additional values
of h were therefore sampled at 7=0.4. Nevertheless, the gi-
ant run at 7=0.3 does highlight the qualitative disagreement
between our simulations and FMT-DFT, showing that the
problem is present even at moderate pressure.

If we accept Oettel’s proposal [11], at least qualitatively,
then the difference between our data and the Derjaguin limit,
on the one hand, and FMT-DFT data on the other, is due to a
line tension contribution that is missed altogether by the Der-
jaguin approximation while grossly overestimated by FMT-
DFT. This further implies that we should be able to link our
data to these two limiting forms by the introduction of a
single additional parameter (representing the disparity with
the Derjaguin approximation at i=0¢). To achieve this re-
quires us to first fit our data with a function identical in form
to the FMT-DFT prediction. In fact, the FMT-DFT data of
Ref. [9] are remarkably well-fitted by a straight line at nega-
tive depletion force and a quadratic curve for the repulsive
region, spliced together with matching slopes. The same pro-
cedure leads uniquely to the dashed curves in Fig. 6, having
fixed the value at h=0. It should be noted that this unifica-
tion cannot be exact because it ignores some minor curvature
in the attractive force region [8] (apparently also ignored in
[9]) that is not the subject of our study, and the fact that the
Derjaguin limit already contains some minor cancellation of
errors at nanocolloidal size ratios. Notwithstanding, in Fig.
6(b) the only discernible difference between our representa-
tion of the FMT-DFT data of [9] and the original data is that
the latter shows a hint of a dimple in the close vicinity of
h=0o. The values of I, obtained from the giant runs at h=0
fully determine the fits to our simulation data. These fits are
clearly in good agreement with the results of our standard
runs, despite the large error bars associated with individual
data points. We can now use our fitting procedure to illustrate
the nature of the fan predicted by Oettel; i.e., the nature of
the convergence to the two limits as the size ratio is varied:

ﬁf02_1§02<h—ho> X ltt.—lw(a)<h—ho>
2R~ 2R oor

w

)

O'—ho O'—ho

h0$h$0', (12)

where I,(0) refers to the value at h=o, [,0°/2R’
=-2mBy0? denotes the Derjaguin limit of large R’ and
o—hy L,0°I2R’'

T mBpo”

(13)

We might expect from Eq. (1) that for sufficiently large size

asymmetry
r—1.(o) o
w W — 14
” a(?])\/ZR, (14)

Setting the value of the coefficient from our giant run at high
pressure yields a(0.4)=2.68 from a size ratio of 20. Figure
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FIG. 7. Depletion potentials, obtained from the area under the
depletion force curves displayed in Fig. 6(b).

6(b) also displays curves at size ratios of 50 and 100 that
illustrate the slow convergence towards the Derjaguin limit
resulting from a \o/2R' correction. If we now push this
fitting towards molecular sized colloids, then the FMT-DFT
data correspond to a size ratio of around 9 or 10. It could
therefore be of considerable importance that the depletion
force from FMT-DFT has been firmly reported as showing
no significant departure from scaling with colloid radius at
size ratios from 10 upwards [8,11]. However, the analogous
treatment of our data at 7=0.3 shows a more interesting side
to this qualitative disagreement. Namely, at this moderate
pressure our simulation data are much closer to the Der-
jaguin limit [ @(0.3)=0.784], whereas the FMT-DFT data are
a lot further away; corresponding to a size ratio of between
one and two. We conclude that the incorrect behavior of
FMT-DFT for the repulsive part of the depletion potential is
qualitatively present at all but very low pressure, where it
reduces to the Derjaguin limit. So, at moderate pressure the
Derjaguin approximation is significantly better than FMT-
DFT, in relative terms, while at high pressure the nanocol-
loidal regime is pushed relatively closer to the FMT-DFT
prediction, although the absolute error is increasing with
pressure. Why then have previous authors reported good
agreement with the same FMT-DFT data at 7=0.3? The an-
swer can be seen in Fig. 6(a), where one notes that within
simulation error it is tempting to put a straight line through
the data such that the difference with the FMT-DFT curve is
minimized, although this will then have a significantly
smaller slope than the Derjaguin value [10]. When translated
into the depletion potential, the area under the depletion
force curves of Fig. 6, the qualitative disagreement with the
FMT-DFT prediction is no longer obvious, due to the can-
cellation of error involved in replacing the incorrect curva-
ture of the FMT-DFT prediction with a straight line of un-
physical slope. We return to some of these issues concerning
fitting of the simulation data in the discussion section below.

Figure 7 displays the depletion potentials W(h) defined by
the depletion forces plotted in Fig. 6(b). At this high pressure
the Derjaguin approximation predicts no stable depletion at-
traction, instead a minimum lies at A=o. In contrast, FMT-
DFT continues to show a strong depletion attraction at con-
tact with the wall. Our simulation system at a size ratio of 20
lies almost exactly on the boundary between these two quali-
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FIG. 8. Excess line adsorption of solvent within an annular
wedge, defined by the decomposition (15). Straight lines joining
successive data points are just guides to the eye. The solid triangles
denote giant run values at ~=o0; here the symbol size is the error
bar. (a) At #=0.3. (b) At =0.4.

tatively different regimes. The zero of the depletion potential
is not determined from force measurements, but from com-
parisons of FMT-DFT with the Derjaguin approximation [9]
we expect that the value at the origin W(0) varies much more
than W(o). Accordingly, we have chosen to plot W(h)
-W(o).

Another route to the depletion force is via the Gibbs ad-
sorption equation (9). In the grand canonical ensemble [29]
this simply requires us to measure the average total number
of solvent particles in the system:

(N) = pV(h) - j—;Aw) N R (15)

In particular, defining Af=f-f” where f* denotes the Der-
jaguin limit of mesoscopic colloid radius,

(?;A‘f_i ex’
P pAUE (16)

Figure 8 shows our data for the excess line adsorption
(N“)(h) in a single annular wedge. It is notable that this line
adsorption is very small; a deficit of only about ten solvent
particles per annular wedge. Since this is of order 0.1% of
the total amount of solvent, the data from standard runs are
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not accurate enough to make this route practical. In fact,
within the statistical error of our standard runs it is not pos-
sible to discern any dependence on h, even at 7=0.4, and
hence confirm a deviation from the Derjaguin limit. We can
argue that this null result is not in contradiction with our
direct measurements of the depletion force, within statistical
error, by considering our giant run results at 7=o0. A rough
estimate of the left side of Eq. (16) is [Af(5=0.4)-Af(n
=0.3)]/[u(5=0.4)— u(5p=0.3)]=-23/ 0 which is not incon-
sistent with the data in Fig. 8. Also, this route clearly suffers
from the possibility that JAf/du might well be a strong func-
tion of A.

V. DISCUSSION

Our simulation data are restricted to a size ratio of 20.
With one or two orders of magnitude more simulation time,
it would be possible to be fully predictive as to the precise
form of the depletion force in hard-body colloidal physics. In
particular, giant simulation runs carried out over the full
range of separations 4 would allow one to probe the limita-
tions of the simple quadratic extension to the Derjaguin
form, and giant runs at separation =0 for a range of size
asymmetry are needed to confirm the VR’ scaling prediction
of Oettel’s modeling. Notwithstanding, it is already clear
from our current data that neither the Derjaguin approxima-
tion nor FMT-DFT as previously implemented are able to
correctly describe the depletion force of hard-body colloidal
systems in the nanocolloidal regime. Since the Derjaguin ap-
proximation is one of the foundation stones of colloidal sci-
ence and FMT-DFT is the most advanced numerical theory
of the liquid state currently available, our main conclusion
represents a serious challenge to current statistical mechani-
cal understanding of colloidal systems. The pair depletion
force is the dominant short-range interaction between col-
loids even at high concentration of solute and a failure to
properly describe this interaction at moderate to high total
density makes it impossible to trust predictions of colloidal
crystallization in bulk or at surfaces. A similar comment ap-
plies to the prediction of interfacial phase diagrams, such as
layering and wetting phenomena. The problem might be
largely restricted to hard-body models, if due more to the
high pressure rather than confinement of solvent. However,
the inclusion of attractive interactions would introduce wet-
ting and drying phenomena deep within the annular wedges,
between colloids and between colloids and walls, which
could easily introduce physics that is not present in either the
Derjaguin approximation nor FMT-DFT applied to colloidal
mixtures. One must therefore be prepared for colloidal phys-
ics to present us with intrinsically harder problems than stan-
dard liquid state physics. This warning is likely to be equally
relevant to integral equation theories [6,12,13,30].

Oettel’s proposed extension to the Derjaguin approxima-
tion [11] appears to show considerable promise. By explicitly
modeling the quasi-two-dimensional region deep within the
wedge as an annular pore, but still treated in the same spirit
as a Derjaguin approximation, Oettel obtains what is essen-
tially a line tension contribution to the Derjaguin approxima-
tion. This contribution is important only as 42— o and most
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likely scales nonanalytically in the curvature; as \o/2R’. In
this manner, Oettel is able to unify the FMT-DFT prediction
with the Derjaguin limit of large size asymmetry. It is obvi-
ous why the standard Derjaguin analysis of depletion scales
linearly with colloid radius. It is not obvious why this linear
scaling is also obtained numerically in FMT-DFT, unless for
some fundamental reason the FMT-DFT mixture functional
totally fails to capture the annular geometry of colloidal mix-
tures. In this scenario one might view the FMT-DFT predic-
tion as the molecular limit 2R’ — ¢. Then FMT-DFT and the
Derjaguin approximation are opposite limits, with the nano-
colloidal regime falling in between. This unification is inevi-
tably associated with a breakdown in the linear scaling with
curvature. Thus a plot of the depletion force scaled with
colloid radius now shows a fan of curves within the repulsive
force region, as the size ratio is varied. Our present simula-
tion data are consistent with this prediction, but not conclu-
sive because they are restricted to a single size ratio. In par-
ticular, with regard to our modeling in Fig. 6, based on Egs.
(12)—(14), it is not known when/if the VR’ scaling breaks
down below a size-ratio of 20, nor whether or not the as-
sumed quadratic form for the repulsive depletion force ap-
plies above size ratios of 20. Considering the latter issue, we
note that it is unclear to the present authors whether or not
the precise shape of the depletion force f(h) is quantitatively
predicted by the simplified approach of Oettel. To go signifi-
cantly further with our simulation method would require
more than just a substantial investment in resources, it would
also demand large changes in simulation system size and/or
geometry that would need to be carefully considered to avoid
unwanted introduction of finite size effects on confinement
structure and density fluctuations.

The reasons for the qualitative breakdown of FMT-DFT
are somewhat mysterious. A detailed analysis of the statisti-
cal mechanics of FMT-DFT has indicated a possible funda-
mental limit to its validity for systems of large size asymme-
try [31]. Indeed, these authors specifically warn against
trusting FMT-DFT in the depletion regime of colloidal phys-
ics, warning of possible inherent “dramatic bias in the case
of mixtures of very dissimilar spheres.” However, a full un-
derstanding of the fundamental basis of FMT-DFT presents
formidable challenges in combining geometry with statistical
mechanics (statistical geometry) and it is far from obvious
how one might go about correcting FMT-DFT without de-
stroying its remarkably useful properties in other applica-
tions. Oettel [11] considered a variety of possible improve-
ments, such as imposing the quasiexact bulk equation of
state, but reports that these obvious improvements show no
convergence to the Derjaguin limit at large size ratio [32]. Of
particular interest is the additional statistical mechanical con-
sistency that one can impose on FMT-DFT [11]. The use of
FMT-DFT to derive the pair depletion force has been based
on the so-called insertion method [8]. This route treats one of
the colloids as a fixed external field (a wall) and then calcu-
lates the change in solvent grand potential needed to bring a
second colloid up to a distance / from the fixed colloid.
Here, the underlying statistical mechanics assumes that the
FMT-DFT functional for the colloidal mixture is accurate in
the limit of zero concentration of colloid in an inhomoge-
neous solvent. Note that this route only requires solving for

011402-10



HARD-SPHERE FLUID ADSORBED IN AN ANNULAR...

the density profile of pure solvent in the presence of the fixed
colloid alone, thereby avoiding the serious numerical prob-
lems of minimizing the FMT-DFT functional in annular ge-
ometry. Oettel enforces consistency between the insertion
route and the low solute concentration limit of a bulk colloi-
dal mixture, but still fails to achieve a qualitative improve-
ment. One might argue from the above that all mixture FMT-
DFT functionals are inherently untrustworthy for colloidal
systems because they somehow fail to capture the underlying
annular geometry. However, this would not apply to FMT-
DFT implemented for pure solvent within annular geometry,
the direct analog of our simulation procedure, since this
“brute force” route only demands accurate modeling of in-
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homogeneous fluids of pure solvent. The numerical compli-
cations of multidimensional DFT are formidable [33], but it
would obviously be worthwhile to undertake a direct com-
parison with our data of Fig. 6(b) despite the fact that it
would get us no closer to developing a trustworthy functional
for colloidal mixtures.
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